Journal of Organometallic Chemistry, 340 (1988) 19–21 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Synthesis of siloxanes

V *. Oxygen-17 NMR spectroscopy

K. Rühlmann*, U. Scheim,

Sektion Chemie der Technischen Universität Dresden, Mommsenstr. 13, Dresden, DDR-8027 (D.D.R.)

Slayton A. Evans, Jr., Jeffery W. Kelly

The University of North Carolina at Chapel Hill, Venable and Kenan Laboratories 045A, Chapel Hill, North Carolina 27514 (U.S.A.)

and Alan R. Bassindale

The Open University, Walton Hall, Milton Keynes MK7 6AA (Great Britain) (Received August 4th, 1987)

Abstract

The ¹⁷O NMR shifts of a series of methyl-, phenyl-, tolyl- and chlorosiloxanes and of $Ph_2Si(OEt)_2$ are reported and discussed.

Introduction

Oxygen-17 NMR spectroscopy has immense potential for assessing charge density at oxygen as well as for aspects of $(p \rightarrow d)\pi$ bonding involving oxygen bound to silicon [2]. Alkoxysilanes [3–6], boroxysilanes [7], and acyloxymethylsilanes with through space O–Si charge transfer potential [8] have received special attention but there is only one report [5] of ¹⁷O NMR shift data for siloxanes, namely those for: $(Me_3Si)_2O$, δ 40; $(Me_3SiO)_2SiMe_2$, δ 57; $(Me_3SiO)_3SiMe$; δ 56; and $(Me_3SiO)_4Si$, δ 42 ppm).

In connection with studies on the acid-catalyzed hydrolysis of chlorosiloxanes [9] we became interested in the basicities of siloxane oxygen atoms. It seemed likely that a correlation of structure and oxygen-17 NMR spectroscopic properties of a variety of siloxanes would provide useful information about the nature of the bonding between silicon and oxygen [10] as well as about the basicity of the siloxy oxygens.

0022-328X/88/\$03.50 © 1988 Elsevier Sequoia S.A.

^{*} For Part IV see ref. 1.

Experimental

Synthesis

The aryldimethylchlorosilanes and methyldiphenylchlorosilane were prepared by coupling between the aryl magnesium halide and dichlorodimethylsilane or trichloromethylsilane [11]. Condensation of the aryldimethylsilanols with the corresponding aryldimethylchlorosilanes afforded the desired diaryltetramethyldisiloxanes, and dimethyltetraphenyldisiloxane was obtained analogously from MePh₂SiOH and MePh₂SiCl [11].

The siloxanes, M_3T and MD_2M (for explanation of symbols see Table 1) were prepared similarly by treatment of trichloromethylsilane or dichlorodimethylsilane with hexamethyldisiloxane and concentrated sulfuric acid [12]. 1.3-Dichlorotetramethyldisiloxane was prepared by partial hydrolysis of dichlorodimethylsilane [13]. 1.1,3,3-Tetrachlorodimethyldisiloxane was obtained analogously from trichloromethylsilane.

The physical constants of the siloxanes prepared were similar to those previously reported [13]. Diphenyldiethoxysilane was obtained from the reaction of dichlorodiphenylsilane with ethanol [14].

Oxygen-17 NMR

Table 1

A Bruker WM-250 NMR spectrometer operating at 33.909 MHz was employed for determination of oxygen-17 NMR parameters of 1, 3, 4, 7 and 8 (see Table 1). Anhydrous acetonitrile or toluene was used as solvent, in 10 mm tubes, and the probe temperature was ca. 50°C. The spectral width was 10–20 kHz; acquisition time, 1.28–10.24 μ s; pulse width 30 μ s (90°), and 64–2048 data points were routinely used, with a 250- μ s delay between pulse and acquisition to eliminate acoustic ringing; 10⁴–10⁶ transients were required for adequate signal presentation [15]. The spectra of 2, 5, 6, 9, and 10 (see Table 1) were recorded with a Varian XL-400 spectrometer operating at 54.217 MHz with a pulse width 90° and delay of 50 μ s. Water was used as external standard.

Compound	δ (±1 ppm)	$W_{1/2}$ (Hz)
Ph ₂ Si(OEt) ₂ (1)	18	257
$(Me_3Si)_2O(MM)(2)$	43 "	62
$(Me_2PhSi)_2O(M^{Ph}M^{Ph})(3)$	33	227
$(Me_2 - p - Me - C_6 H_4 Si)_2 O(M^{T_0} M^{T_0})$ (4)	34	160
$(MePh_2Si)_2O(M^{Ph}2M^{Ph}2)$ (5)	30	230
$(Me_3SiO)_2SiMe_2 (M_2D) (6)$	53 "	120
$(Me_3SiO)_3SiMe(M_3T)(7)$	58 "	136
$(Me_3SiOSiMe_2)_2O(MD_2M)$ (8) Me_3SiO	55	116
Me ₂ SiO	71	145
$(ClMe_2Si)_2O(M^{Cl}M^{Cl})(9)$	73	95
$(Cl_2 MeSi)_2 O (M^{Cl} 2M^{Cl} 2) (10)$	91	80

¹⁷O NMR shift parameters for a series of siloxanes

^a The ¹⁷O shifts determined corroborates the previously reported values (see ref. 5).

Results and discussion

We obtained ¹⁷O NMR spectral data for ten Si-O compounds (Table 1). Data on additional siloxanes are necessary before definitive correlations can be established, but some comment on the observed ¹⁷O shifts is appropriate.

Comparison of the ¹⁷O NMR shifts of dimethyldiethoxysilane (§ 25 ppm) [10] and diphenyldiethoxysilane suggests that the phenyl rings exert a shielding effect on the ethoxy oxygens. This shielding may arise from (i) a steric interaction between the γ -CH group (the *ortho*-CH of the phenyl ring) and oxygen atoms, and/or (ii) $(2p \rightarrow 3d)\pi$ interactions between the phenyl groups and the silicon atoms, which would diminish the importance of $(2p \rightarrow 3d)\pi$ interactions between the silicon and oxygen atoms, resulting in a slightly higher charge density on the siloxy oxygens. Comparison of the ¹⁷O chemical shifts for MM, M^{Ph}M^{Ph}, M^{To}M^{To}, and M^{Ph}2M^{Ph}2 reveals clearly the shielding effect due to the phenyl group and also indicates that the p-Me substituent has no significant effect. More interesting is the clear distinction between the two various oxygens in MD_2M . The low field resonance at δ 71 ppm is readily assigned to the central oxygen atom on the basis of the signal intensity. Comparison of the shift values for MM, M^{CI}M^{CI}, and M^{CI}2M^{CI}2 reveals that the chlorine substituents cause a strong downfield shift as a result of their high electron withdrawing ability and/or to interactions between the lone pair electrons of chlorine and oxygen.

Finally, the ¹⁷O chemical shift for M_3T and the terminal oxygen atoms in MD_2M are virtually identical, implying that substantial branching around the silicon atom may not be reflected in significant oxygen-17 shift differences. Comprehensive studies of a wider range of siloxanes will undoubtedly provide a better understanding of the trends in the shifts and their relation to silicon-oxygen bonding characteristics.

References

- 1 U. Scheim, K. Rühlmann, H. Grosse-Ruyken, and A. Porzel, J. Organomet. Chem., 314 (1986) 39.
- 2 L.A. May, Latv. PSR Zinat. Akad. Vestis, Kim. Ser., (1982) (6) 646.
- 3 I. Zicmane, E. Liepins, and E. Lukevics, Latv. PSR Zinat. Akad. Vestis, Kim. Ser., (1982) (1) 91.
- 4 E. Liepins, I. Zicmane, E. Lukevics, E.I. Dubinskaya, and M.G. Voronkov, Zh. Obshch. Khim., 53 (1983) (5) 1092.
- 5 E. Liepins, I. Zicmane, and E. Lukevics, Kremniorg. Soedin. Mater. Ikh Osn., Tr. Soveshch. Khim. Prakt. Primen. Kremniiorg. Soedin., 5th, 1981 (Publ. 1984) 16.
- 6 E. Liepins, I. Zicmane, G. Zelcans, and E. Lukevics, Zh. Obshch. Khim., 53 (1983) (1) 245.
- 7 W. Biffar, H. Nöth, H. Pommerening, and B. Wrackmeyer, Chem. Ber., 113 (1980) 333.
- 8 E. Liepins, I. Zicmane, E. Ignatovics, L.I. Gubanova, and M.G. Voronkov, Zh. Obshch. Khim., 53 (1983) (8) 1789.
- 9 K. Rühlmann, J. Brumme, U. Scheim, and H. Grosse-Ruyken, J. Organomet. Chem., 291 (1985) 165.
- 10 P.K. Harris, and B.J. Kimber, Org. Magn. Reson., 7 (1975) 460.
- 11 V. Chvalovsky, and V. Bazant, Coll. Czech. Chem. Commun., 21 (1953) 93.
- 12 U. Scheim, H. Grosse-Ruyken, K. Rühlmann, and G. Schmidt, DD-WP 226567 (20.9.1984)
- 13 W. Patnode, and D.F. Wilcock, J. Amer. Chem. Soc., 68 (1946) 358.
- 14 M. Momonoi, and O. Yamaguchi, J. Chem. Soc. Japan, Pure Chem. Sect., 78 (1957) 1602; Chem. Zentr., 130 (1959) 101.
- 15 (a) J.C. Dyer, D.L. Harris, and S.A. Evans, Jr., J. Org. Chem., 47 (1982) 3660; (b) T.H. Sammakia, D.L. Harris, and S.A. Evans, Jr., Org. Magn. Res., 22 (1984) 747.